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Abstract
This paper shows that an exact calculation for transition probability can make
some systems deviate seriously from Fermi’s golden rule. The paper also shows
that the corresponding exact calculation of the phonon-induced hopping rate for
a deuteron in the Pd–D system plus many-body electron screening, proposed
by Ichimaru, can explain experimental factors observed in the Pd–D system. It
also predicts that the perfect and low dimensional forms of the Pd lattice are
very important factors for the phonon-induced hopping rate enhancement of
deuterons in the Pd–D system.

1. Introduction

It must be emphasized that two assumptions were made in calculating the transition probability
prior to this paper. Suppose that the Hamiltonian H can be put in the form H = H 0 + V , where
V = A exp(iωt) + A+ exp(−iωt), |a〉 is a discrete state of H 0, |b〉 is the state in a continuous
spectrum of H 0, B is the domain of |b〉 and A is a time-independent operator, and that, at
initial time t0 (which is taken to be zero), the system is in the state |a〉. The probability Pa→B

of a transition into one of the states in the domain B at time t through absorbing energy h̄ω

has been given [1–3] as

Pa→B =
∫

B
Pa→bρb(Eb) dEb, (1)

Pa→b = 1

h̄2 |Aba|2 f (t, ωb − ωa − ω), (2)
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f (t, ωb − ωa − ω) = sin2(ωb − ωa − ω)t/2

[(ωb − ωa − ω)/2]2
, (3)

lim
t→∞ f (t, ωb − ωa − ω) = 2π tδ(ωb − ωa − ω), (4)

where ρb(Eb) is the density of states at Eb, Eb = h̄ωb, Ea = h̄ωa , and Aba = 〈b|A|a〉. Also,
−ε/2 < Eb < ε/2. The first assumption in calculating the integral in equation (1) in [1–3] is
that the width ε is sufficiently small such that Aba and ρb remain practically constant over the
integral, so they can be taken outside the integral sign in equation (1). The second assumption
in [1–3] is that t is sufficiently large for ε to be much greater than the period of oscillation of
the f function in equation (3), i.e. ε � 2π h̄/t , so that equation (4) is applicable. Under the
two assumptions, Pa→B is then [1–3]

Pa→B = 2π

h̄
|Aba(Eb)|2ρb(Eb)t . (5)

The probability Pa→B ∝ t may then be called Fermi’s golden rule [1, 2].

2. Hydrogen ionization

We will take hydrogen ionization as an example for which the two assumptions cannot be used
and thus for which Fermi’s golden rule will be broken. We can think of the atom as being
placed between the plates of a capacitor to which an alternating field E(t) = 2E0 sin(ωt) is
applied. For the ground state of hydrogen ionization, Ea = h̄ωa = −13.6 eV. Schiff [1] then
gives

ρb(Eb) = mL3k

8π3h̄2 sin θ dθ dφ, (6)

where θ and φ are the polar angles of wavevector k to the direction of the electric field,
Eb = h̄2k2/2m, where m is the electron mass, and L3 is the volume of the box in using box
normalization. |Aba(Eb)| is expressed as [1]

|Aba(Eb)| =
∣∣∣∣ 32eE0ka5

0 cos θ

(πa3
0 L3)1/2(1 + k2a2

0)
3

∣∣∣∣, (7)

where a0 is the Bohr radius. Substituting equations (6) and (7) into (5) and completing the
integration over θ and φ, Pa→B in equation (5) then becomes

Phydrogen = 1024me2E2
0a7

0

3h̄3

k3

(1 + a2
0k2)6

t . (8)

Equation (8) now obeys Fermi’s golden rule. Note that equation (8) comes from (5), which is
obtained in terms of the two assumptions. In the case of boundary ionization, −h̄ωa = h̄ω,
energy conservation tells us that Eb = h̄2k2/2m = h̄ω + h̄ωa = 0, and thus Phydrogen in
equation (8) will be zero. It is obvious that the assumption in equation (8) of zero transition
probability for hydrogen boundary ionization is not reasonable.

Let us abandon the two assumptions and make an exact calculation for the integral of
equation (1) for the case of hydrogen boundary ionization. Equation (1) will become

Phydrogen,exact = 1

h̄2

∫
|Aba|2ρb(Eb)

sin2ωbt/2

(ωb/2)2
dEb. (9)

Substituting equations (6) and (7) into (9), completing the integration over θ and φ, and noting
that Eb = h̄ωb = h̄2k2/(2m), yields

Phydrogen,exact = 4096
√

2m5/2e2 E2
0a7

0

3π3h̄5/2
I, (10)
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Figure 1. A curve of log(I ) versus log(t) where, based on equation (10), I is proportional to
the transition probability, Phydrogen,exact, of hydrogen boundary ionization. This curve shows that
Phydrogen,exact is nearly equal to a constant over the range 10−13 < t < 106 (s).

I =
∫

sin2ωt/2√
ω(1 + 4.85 × 10−17ω)6

dω, (11)

where, for convenience, ω = ωb. Equation (11) clearly indicates that |Aba|2ρb(Eb) is strongly
energy-dependent. The exact integration for equation (11) is shown in figure 1. This indicates
that Phydrogen,exact is not equal to zero and is nearly time-independent over a wide time interval,
from 10−13 to 106 s. Therefore, Phydrogen,exact is not proportional to time. We can say that
Fermi’s golden rule has not been obeyed.

3. Phonon-induced hopping rate enhancement of deuterons in the Pd–D system

For the Pd–D system the explicit form of the D-phonon interaction Hamiltonian, Hint, in the
deformation potential approximation is expressed as [4, 5]

Hint =
∑
m,p

c+
ma(p)cmCi

[
h̄

2N Mω

] 1
2

p · e(p) + h.c., (12)

where N is number of Pd atoms in the Pd–D system, cm is the annihilation operator of a
deuteron at site m, a(p) is the phonon annihilation operator, M is the mass of a Pd atom,
e(p) is the longitudinal polarization unit vector, p · e(p) = p for a longitudinal phonon,
p is the wavenumber of the phonon, ω is the phonon frequency, and C is the deformation
potential coefficient. For a one-dimensional Pd lattice, the interaction between a Pd2+ ion and
a deuteron is ε = 2e2/(0.5a), where a = 4.0 Å [6]. From [5], δε = Cδ(Na)/Na. Therefore,
C = −14.4 eV.

Let us assume that the deuteron is at m at t = 0. The probability amplitude of finding the
deuteron still at m at t > 0 is the following Green function of time at finite temperature [4]:

G(t) = −i〈T cm(t)c+
m(0)〉. (13)
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A waiting-time distribution Q(t) is Q(t) = |G(t)|2 [7]. The lifetime of a deuteron at m,
i.e. 〈t〉, is given as [7]

〈t〉 = −
∫ ∞

0
t dQ(t). (14)

For an exact derivation, reference [4] gives

Q(t) = e−P(t). (15)

The transition probability of the deuteron P(t) is then expressed as [4]

P(t) = 2C2

h̄N M

∑
p

[2n(p) + 1]
p2

ω

sin2 ωt/2

ω2
, (16)

where n(p) is the Bose distribution of the phonon. We will now just consider the zero-point
energy term in equation (16). Because the signs of the two terms in equation (16) are the same,
P(t) will become larger if we also consider the term with the Bose distribution of the phonon.
For the zero-point energy term, equation (16) can be transformed into the integration

P(t) = 2C2

h̄N M

∫ ∞

0
dω ρ(ω)

p2

ω

sin2 ωt/2

ω2
, (17)

where ρ(ω) corresponds to the density of states. We know from equation (4.6) of [8] that,
for a completely random lattice, p2 in equation (17) represents |k − k′|2, where k and k′
are the wavevectors of a particle before and after absorption of a phonon, respectively. The
|k − k′|2 does not depend on energy for a completely random lattice [8]. We take the average
value of |k − k′| in the Brillouin zone, i.e. |k − k′| = p̄ = π/2a. For a perfect lattice,
|k − k′| = p = ω/v, where v is the sound velocity. We then take

p =
(

ω

v

)1−β ′

p̄β ′
, (18)

where p̄ = π/2a and 0 � β ′ � 1. For a perfect lattice β ′ = 0; for a completely random lattice
β ′ = 1. The case of 0 < β ′ < 1 in equation (18) is our assumption. Let us first consider
the one-dimensional case. The formula of the density of states (equation (23.34) in [9]) can
be used in the one-dimensional case, and ρ1(ω) = L/(2πv1) for a one-dimensional Pd–D
system, where L is the length of the Pd–D system, v1 is the longitudinal sound velocity [9],
and the subscript 1 represents the one-dimensional system. The value of v1 can be obtained
from the Bohm–Staver formula [10], v = √

2Z EF/3M , where EF is the Fermi energy of
the Pd–D lattice. Since EF = 2.33 eV, Z = 2 and M = 106 × 1.67 × 10−24 g, therefore
v1 = 1.68×105 cm s−1. Letting β = 1−2β ′ and A = C2π2β ′

L/[π h̄ N Mv3−2β ′
(2a)2β ′

], (17)
then becomes [11]

P1(t) =
(

t

τ1

)1−β

, (19)

τ1 =
[

Aπ

4
(2 − β) sin [π(1 − β)/2]

]− 1
1−β

, (20)

where 
 is the gamma function. If the one-dimensional Pd–D system now approaches a
perfect lattice (β = 1), then the transition probability of the deuteron under the action of the
phonons now deviates seriously from Fermi’s golden rule (see equation (19)). Substitution of
equation (19) into (14) and (15) yields

〈t〉1 = τ1


(
1 +

1

1 − β

)
. (21)
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The physical meaning of 〈t〉1 is the lifetime of a deuteron at a site m. Therefore, the hopping
rate of a deuteron at a site under the action of phonon interaction is w1 = 1/〈t〉1. Numerical
calculations give the following results: for β = 0.8, τ1 = 3.37×10−35 s, 〈t〉1 = 4.0×10−33 s,
and w1 = 2.5 × 1032 s−1; for β = 0.9, τ1 = 1.15 × 10−69 s, 〈t〉1 = 4.17 × 10−63 s, and
w1 = 2.4 × 1062 s−1.

In the above calculations, we assumed that the limit of the phonon frequency is infinite.
In the case of an upper limit ωD = 1013 Hz, equation (17) becomes

Pfinite,1(t) = A
∫ ωDt

0
d(ωt)

sin2 ωt/2

(ωt)2−β
t1−β . (22)

Pfinite,1(t) can also be written in the form of equation (19):

Pfinite,1(t) =
(

t

τfinite,1

)1−β

, (23)

〈t〉finite,1 = τfinite,1


(
1 +

1

1 − β

)
, (24)

where the definition of τfinite,1 can be obtained from equations (22) and (23).
Now let us assume that at t = 0 we have a deuteron at site m with energy Em and a phonon

with frequency ωD, and at t > 0 we have just a deuteron at site m. For this physical system
the uncertainty relation for energy, equation (44.1) of [12], gives ωDt = 1 for any value of
t . Numerical calculations give the following results: for β = 0.8, τfinite,1 = 3.8 × 106τ1,
〈t〉finite,1 = 1.54 × 10−26 s, and wfinite,1 = 6.5 × 1025 s−1; for β = 0.9, τfinite,1 = 1.6 × 1016τ1,
〈t〉finite,1 = 6.72 × 10−47 s, and wfinite,1 = 1.48 × 1046 s−1.

Considering that a deuteron with radius 10−13 cm under the action of a phonon has the
possibility to hop in all directions, the probability for a deuteron to hop in a specific deuteron
is P = π(10−13)2/(4πa2) = 1.56 × 10−12, where a (= 4.0 Å) is approximately the distance
between the two deuterons. According to an estimation of Ichimaru for many-body screening
effects in the Pd–D system, the collision rate of a deuteron pair is RIchimaru = 7.3×10−31 s−1 [6].
Considering the hopping rate enhancement of deuterons due to phonons, RIchimaru generally
becomes RLiu = RIchimaru wsP . For β = 0.8 and 0.9, RLiu,finite,1 = 7.4 × 10−17 and
1.69 × 104 s−1, respectively.

If the Pd–D systems are three- or two-dimensional systems, then a similar method gives

τfinite,3 = τfinite,1

[
v

4+β

3

v
2+β

1

π

a2(0.574 × 1013)2

] 1
1−β

, (25)

τfinite,2 = τfinite,1

[
v

3+β

2

v
2+β

1

1

a(0.5 × 1013)

] 1
1−β

, (26)

and the forms of equations (23) and (24) do not change. The Bohm–Staver formula gives
v3 = 3.3 × 105 cm s−1 and v2 = 2.66 × 105 cm s−1, where a = 4.0 Å. For a three-
dimensional system with β = 0.8 and 0.9, wfinite,3 = 4.3 × 1017 and 3.33 × 1029 s−1 and
RLiu,finite,3 = 4.9 × 10−25 and 3.8 × 10−13 s−1, respectively. The value of RLiu,finite,3 for
β = 0.9 is nearly equal to the observed value of 10−11 s−1 in a three-dimensional Pd–D
system [13]. For a two-dimensional system with β = 0.8 and 0.9, wfinite,2 = 2.56 × 1022

and 1.32 × 1039 s−1 and RLiu,finite,2 = 2.92 × 10−20 and 1.5 × 10−3 s−1, respectively. Based
on values of RLiu,finite,x with x = 1, 2, 3, our theory predicts that the perfect and the low
dimensional forms of the Pd lattice are very important factors for phonon-induced hopping
rate enhancement. It should be noted that, for an ordinary Pd crystal, the lattice cannot be
completely perfect. For very a small deviation from perfection, for example β ′ = 0.15, then
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wfinite,3 ≈ 109 s−1, which is the ordinary transition rate. This is the reason why the collision
of a deuteron pair cannot be observed easily in a three-dimensional Pd–D system [14].
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